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Control functions and grid qualities measurements in the
elliptic grid generation around arbitrary surfaces
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SUMMARY

This paper describes the three-dimensional elliptic grid generation. The two-dimensional approach for the
control functions obtained by modifying the Thomas–Middlecoff method is applied on the planes
perpendicular to the main flow direction co-ordinate, which is assumed to be the function of only one
corresponding co-ordinate in the computational domain. The grid orthogonality is improved by about 40
per cent compared with that of the algebraic initial grid. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The algebraic grid methods usually adopt transfinite interpolations combined with Bezier and
B-spline curves to improve grid qualities. These techniques are usually good, however, they can
not guarantee the orthogonality and the grid may be overlapped.

Since the grid size is actually restricted and the body surface shape should be considered, the
most elliptic grids employ the adequate control functions to refine the grid. They resist grid
line overlapping, are always smooth, and can be used for grid adaptation. The control point
formulation using the polynomials is developed by Eiseman [1]. Thompson and Weatherill [2]
and Thomas [3] evaluate the control functions on the boundaries by interpolation. Soni [4]
presents cell area and grid spacing approaches to optimize the two-dimensional grid orthogo-
nality. Soni [5] measures the grid qualities considering the truncation error caused by the
non-uniform grid. Grid refinement can be pursued by the introduction of control functions
found in the arc length parameter [6]. The grid qualities of a single block obtained for the
complicated geometry may become poor, therefore multi-block or an unstructured grid system
is alternatively recommended [7].
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In this paper, a three-dimensional elliptic structured grid system is easily generated with
consideration of the control functions. The grid quality is also discussed.

2. GRID GENERATION

The body-fitted co-ordinates are generated by determining the curvilinear co-ordinates in the
physical domain. This problem can be settled by solving the partial differential equation
(PDE), and the extremum principles guarantee a one-to-one mapping between the physical and
computational domains. The governing equations, obtained from both minimizing the integral
of a grid point density and embedding the control functions, become Poisson-type systems, i.e.

92j i=f i, i=1, 2, 3 (1)

where j i= (j, h, z) is the computational space, r= (x, y, z) is the Cartesian co-ordinate,
f i= (f, c, u)=g jkf jk

i ( j, k=1, 2, 3) are the control functions, and g jk are the contravariant
metric tensors [8]. Equation (1) is transformed to be the quasi-linear elliptic PDE

92r=gij(r
j ij j+f ij

kr
j k)=0, i, j, k=1, 2, 3 (2)

Equation (2) generates the grid system, and f jk
i =d j

idk
i g ijfi, where d is the Kronecker delta.

Eiseman [9] suggested algebraic techniques providing exact control of the mesh properties
under the given constraints. Steger and Sorenson [10] introduced forcing functions to change
intersection angles and spacings. In this paper, the control functions will be evaluated by
solving the governing equations simultaneously, and the grid spacing is controlled in the
nearest region of the body surface. Now Equation (2) can be rearranged as

gijr
j ij j+gkkfkr

j k=0, i, j, k=1, 2, 3 (3)

In external flow calculations for ships, etc., x=x(j) can be assumed [11] and thus Equation
(3) reduces to a quasi-three-dimensional form, i.e.
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Three control functions are easily determined as follows:
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where A=yhzz−zhyz. The three-dimensional distribution meshes are constructed by calculat-
ing the intersection of two adjacent lines on the projection plane.

Equation (3), with substituting the control functions, is finally expressed in the tri-diagonal
system, where j is the main flow direction, and h is perpendicular to the body surface.
Orthogonality is forced on the (y, z) plane, and the grid spacing is adjusted just near the body
surface, i.e.

Figure 1. Test grid system.
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Figure 2. Comparison of the grids at the center position of x (i=15) (solid, elliptic grid; dashed,
algebraic grid).
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where gij is the covariant metric tensor, g23=0 and 
g22 denote the chosen grid spaces just
near the body surface. Then, two-dimensional analysis is applied in the (x, y) plane, where the
control functions are chosen as Equation (7) by modifying the Thomas–Middlecoff method
[12]
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The initial grid is generated linearly using three-dimensional transfinite interpolation (the
Boolean form) as follows:

rj�rh�rz=rj+rh+rz−rjrh−rhrz−rjrz+rjrhrz (8)

This is a kind of univariate method and the terms in Equation (8) are derived as follows:
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Figure 3. Comparison of the grids at k=25 for case 1 and k=5 for case 2 (solid, elliptic grid; dashed,
algebraic grid).
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Figure 4. The orthogonality contours at i=15, i=21 for case 1.

Figure 5. The orthogonality contours at i=15, k=11 for case 2.
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where a1=j, a2=1−j, b1=h, b2=1−h, g1=z, g2=1−z. Two surfaces are arbitrarily
constructed to have inflection points on the surfaces. The hyperbolic tangent function is used
to generate the boundary grids.

3. APPLICATIONS AND RESULTS

Grid qualities are estimated in terms of concentration, smoothness and orthogonality, which
are measured by the cell volume, arc length and intersection angles respectively. Eiseman [13]
used the local interpolation functions for the multi-surface transformation, and Kerlick and
Klopfer [14] reparameterized the Jacobian matrix and the metric tensor in two dimensions by
analyzing the truncation error. The grid qualities are measured from the following concepts:

concentration:

(rj ·rh×rz)i, j,k

smoothness:
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orthogonality:
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where rm−1=ri−1,j,k when m= i, rm=ri, j+1,k when m= j+ l, and r0=ri, j,k, etc. Since the
concentration and smoothness can be handled in the algebraic grid, this analysis is focused on
improving the grid orthogonality.

Figure 1 is the finally generated test grids and shows the surfaces inflection well. The grid
sizes are 31×21×31 (case 1) and 31×31×41 (case 2). The boundary grids are moved to
guarantee the orthogonality with keeping the original shape. This is confirmed in Figure 2. The
careful consideration is required just near the highly curved surface because it is difficult to
control simultaneously both the grid space and orthogonality. Especially, the grid lines on the
lowest part in Figure 3(a) are moved a lot.

There are no significant changes in the concentrations and smoothness for both cases.
However, the orthogonality is improved by 37 per cent (case 1) and 45 per cent (case 2).
Figures 4 and 5 show the orthogonality contours in radians.
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4. CONCLUSIONS

This paper shows three-dimensional elliptic grid generation assuming the main flow direction
x=x(j). A two-dimensional approach by modifying the Thomas–Middlecoff method is
applied on the plane normal to x. The grid points on the boundaries are moved while
maintaining orthogonality. Orthogonality is improved by about 40 per cent compared with
those of the initial algebraic grid.
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